Classification of Health Hazard Levels from Occupational Exposure to Toxic Substances (GB 5044-1985)

This standard applies to the classification of health hazard levels from occupational exposure to toxic substances.

1 Basic Definition

Toxic substances occupational exposure to refers to the health hazard substances that may enter into human body through respiratory tract, skin or mouth during workers' production operation, and that exist in the forms of raw material, finished products, semi-finished products, intermediate, by-product of reaction, impurity, etc..

2 Classification Principle

2.1 Classification of health hazard levels from occupational exposure to toxic substances is performed by the following grading criterion based on the six indices of acute toxicity, pathogenic condition of acute poisoning, illness condition of chronic poisoning, chronic poisoning consequence, carcinogenicity and maximum allowed concentration.

2.2 The classification principle shall be determined on the basis of comprehensive analysis and all-round weighing of the above mentioned six indices and the grading results of the majority of them. As for some special toxic substances, classification may be conducted in accordance with the level of major health hazard like acuteness, chronicity and carcinogenicity.

3 Classification Basis

3.1 Acute Toxicity

Acute toxicity is determined in accordance with the data of median lethal concentration (LC_{50}) by intake through the respiratory tract or median lethal dose (LD_{50}) attained through mouth or skin in animal test among which the lowest value of LC_{50} or LD_{50} shall be selected as the figure of acute toxicity.

3.2 Pathogenic Condition of Acute Poisoning

It's a qualitative index to be determined on the basis of the incidence of acute poisoning and consequences of the same. It may be divided into four grades i.e. easy to occur, possible to occur, occasionally occurred, never occurred. The toxic substances that are susceptible to lethal poisoning or disablement shall be considered as having serious consequences of poisoning and those the sufferers of which are easy to get recovered shall be considered as having favorable prognosis.

3.3 Illness Condition of Chronic Poisoning

Normally the incidence of poisoning of operators of major industries the workers of which may be exposed to toxic substances is taken as the base for grading of this index. In case no such data are available the incidence rate of the poisoning symptoms or indices may be considered as the grading basis.

3.4 Chronic Poisoning Consequence

In accordance with the results of chronic poisoning, this index may be divided into four grades i.e. further progressive or impossible to be cured, possible to be basically cured, recoverable and self-recoverable after exposure is eliminated. Chronic poisoning consequence may also be determined in accordance with the character of pathologic change due to injuries (progressive, irreversible or reversible) and the pathophysiologic character of the target organ (power of repair, regeneration and function storage) as

shown by the results of animal tests.

3.5 Carcinogenicity

Toxic substances shall be determined to be carcinogenic substances to human body, susceptible carcinogenic substances to human body, carcinogenic substances to animal or non-carcinogenic in accordance with the data of carcinogenicity of the substances published by International Research Institute of Oncology or other generally recognized similar data.

3.6 Maximum Allowed Concentration

It mainly takes the figures of the maximum allowable concentration of the toxic substances in shop air specified in Table 4 of TJ36-79 "Hygienic Standard for Design of Industrial Enterprises" as the criteria.

3.7 The basis for classification of health hazard levels from occupational exposure to toxic substances is shown in Table 1 according to which they are classified into four levels i.e. extremely hazardous, highly hazardous, intermediately hazardous and slightly hazardous.

4 Classifications of Health Hazard Levels from Occupational Exposure to Toxic Substances and Example Occupations

4.1 The health hazard levels of 56 common toxic substances of China that the workers may be exposed to are classified in accordance with this standard for classification. Refer to Table 2.

4.2 The health hazard level from exposure to the same toxic substance in other industries (not covered in Table 2) shall be classified in accordance with the concentration of the toxic substance in the air of the workshop, incidence of poisoning and exposure time. In case the concentration of the toxic substance in the air of the workshop is up to the maximum allowable concentration figure specified in TJ 36-79 the "Hygienic Standard for Design of Industrial Enterprises" and the incidence rate or incidence rate of symptoms are lower than the corresponding figures covered in this standard, the level may be determined one grade lower.

4.3 When multiple toxic substances are exposed to, the level of the toxic substance that is of the highest health hazard level shall prevail.

Table 1 Basis for Classification of Health Hazard Levels from Occupational Exposure

		Grade				
Index		I (Extremely Hazardous)	II (Highly Hazardous)	III (Intermediately Hazardous)	IV (Slightly Hazardous)	
Acute Toxicity	Aspiratory LC ₅₀ , mg/m ³ Peroral LD ₅₀ , mg/m ³ Percutaneous LD ₅₀ , mg/m ³	<200 <100	200- 100- 25-	2000- 500-	>20000 >2500	
Pathogenic Poisoning	Conditions of Acute	Easy to Cause Poisoning During Production, Having Serious Consequences	Possible to Cause Poisoning During Production, Having Good Prognosis	Occasionally Causing Poisoning	So far Having not Caused Poisoning, but Having Acute Influence	
Pathogenic Chronic Poi:	Conditions of soning	High Incidence (≥5%)	Fairly High Incidence (<5%) or High Incidence of Symptoms (≥20%)	Occasional Cases of Poisoning Occur or Fairly High Incidence of Symptoms (≥10%)	Causing No Chronic Poisoning but Having Chronic Influence	
Consequent Poisoning	ces of Chronic	Further Progressive or Impossible to Be Cured after Exposure Is Eliminated	Possible to Be Basically Cured after Exposure Is Eliminated	Recoverable and No Serious Consequences Will Be Left Behind after Exposure Is Eliminated	Self-Recoverable and No Unfavorable Consequences Will Be Left Behind after Exposure Is Eliminated	
Carcinogenicity		Carcinogenic Substances to Human Body	Suspectable Concinogenic Substances to Human Body	Carcinogenic Substances to Experiment Animal	No Carcinogenicity	
Max. Allowed Concentration mg/m ³		<0.1	0.1-	1.0-	>10	

to Toxic Substances

Grade	Name of Toxic Substance	Example Occupation	
Grade I (Extremely Hazardous)	Mercury and Mercury Compounds	Mercury Smelting, Production of Chlorine and Base by Amalgam Process	
	Benzene	Production and Application of Bonding Agent Containing Benzene (Leather Shoe Making)	
	Arsenic and Its Inorganic Compounds*	Arsenic Mining and Smelting, Extracting and Smelting of Arsenic-Containing Metallic Mine (Copper, Tin)	
	Chloroethylene	Production of PVC Resin	
	Chromates, Bichromates	Production of Chromates and Bichromates	
	Yellow Phosphorus	Production of Yellow Phosphorus	
	Beryllium and Its Compounds	Beryllium Smelting and Production of Beryllium Compounds	
	Parathion	Production and Storage and Transport of Parathion	
	Nickle Hydroxylate	Production of Nickle Hydroxylate	
	Octo, chloroisobutene	Splitting of Difluoromonomethane and Raffinate Treatment	
	Chloromethyl ether	Production of Dichloromethyl ether-Chloromethyl ether, Resin Production through Ion Exchange	
	Manganese and Its Inorganic Compounds	Manganese Mine Exploiting and Manganese Smelting, Smelting of Ferromanganese and Manganese Steel, Production of High Manganese Welding Rods.	
	Cyanide	Production of Cymag, Production of Plexiglas	
Grade II (Highly Hazardous)	T.N.T.	Production of T.N.T. and Munitions Processing and Manufacturing	
	Lead and Its	Lead Smelting, Production of Battery cells	

Table 2 Classification of Health Hazard Levels from Occupational Exposure toToxic Substances and Example Occupations

 Compounds		
Carbon Disulfide	Production of Carbon Disulfide, Production of Viscose Staple Fibre and Viscose Filament	
Chlorine	Production of Liquid Chlorine and Caustic Soda	
Vinyl Cyanide	Production of Vinyl Cyanide, Production of Polyacrylonitrile	
Carbon Tetrachloride	Production of Carbon Tetrachloride	
Hydrogen Sulfide	Production of Sulfide Dye	
Formaldehyde	Production of Phenolic Resin and Pollopas	
Aniline	Production of Aniline	
Hydrogen Fluoride	Production of Electrolytic Aluminium, Hydrofluoric Acid	
Pentachlorophenol and Sodium Pentachlorophenate	entachlorophenol Production of Pentachlorophenol and Sodiu d Sodium Pentachlorophenate entachlorophenate	
Cadmum and Its Compounds	Cadmium Smelting, Production of Cadmium Compounds	
Dipterex	Production, Storage and Transport of Dipterex	
Chloropropene	Production of Epoxychloropropane, Production of Sodium Propene Sulfonate	
Vanadium and Its Compounds	Heyite Mining and Smelting	
Methy Brom	Production of Methy Brom	
Dimethyl Sulfate	Production, Storage and Transport of Dimethyl Sulfate	
Nickle	Nickle Mine Exploiting and Smelting	
Toluenevulcabond	Production of Polyurethane Plastics	
Epoxychloropropane	Production of Epoxychloropropane	
Arsenic Hydride	Smelting of Nonferrous Metal Mine Containing Arsenic	
DDVP	Production, Storage and Transport of DDVP	
Carbonyl Chloride	Production of Carbonyl Chloride	
Chlorobutadiene	Production and Polymerization of	

		Chlorobutadiene	
	Carbon Monoxide	Production of Gas, Blast Furnace Ironmaking, Coking	
	Nitrobenzene	Production of Nitrobenzene	
Grade III	Styrene	Production of Styrene, Plexiglas Manufacturin	
(Intermediately	Methyl Alcohol	Production of Methyl Alcohol	
Hazardous)	Nitric Acid	Production, Storage and Transport of Nitric Acid	
	Sulphuric Acid	Production, Storage and Transport of Sulphuric Acid	
	Hydrochloric Acid	Production, Storage and Transport of Hydrochloric Acid	
	Toluene	Production of Toluene	
	Dimethylbenzene	Paint Spraying	
	Triclene	Production of Triclene, Metal Cleaning	
	Dimethylformamide	Production of Dimethyformamide, Synthesis of Butadiene Rubber	
	Hexachloropropene	Production of Hexachloropropene	
	Phenol	Production of Phenol, Production of Phenolic Aldehyde Resin	
	Nitrogen Oxide	Production of Nitric Acid	
Grade IV (Slightly	Solvent Gasoline	Manufacturing of Rubber Products (Tyres, Rubber Overshoes)	
Hazardous)	Acetone	Production of Acetone	
	Sodium Hydroxide	Production of Caustic Soda, Paper-Making	
	Tetrafluoroethylene	Production of Polytetrafluoroethylene	
	Ammonia	Production of Ammonia, Production of Nitrogenous Fertilizer	

This Standard was initiated by the Administration of Labor Protection of the Ministry of Labor and Personnel.

This Standard was drafted by the Research Institute of Health under China Preventive Medicine Centre.

The main draftsmen of this Standard are Lu Boqin, Fu Weizu.